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The stationary meniscus of an evaporating, perfectly wetting system exhibits an
apparent contact angle Θ which vanishes with the applied temperature difference
∆T , and is maintained for ∆T > 0 by a small-scale flow driven by evaporation.
Existing theory predicts Θ and the heat flow q∗ from the contact region as the
solution of a free-boundary problem. Though that theory admits the possibility that
Θ and q∗ are determined at the same scale, we show that, in practice, a separation of
scales gives the theory an inner and outer structure; Θ is determined within an inner
region contributing a negligible fraction of the total evaporation, but q∗ is determined
at larger scales by conduction across an outer liquid wedge subtending an angle Θ.
The existence of a contact angle can thus be assumed for computing the heat flow; the
problems for Θ and q∗ decouple. We analyse the inner problem to derive a formula
for Θ as a function of ∆T and material properties; the formula agrees closely with
numerical solutions of the existing theory. Though microphysics must be included in
the model of the inner region to resolve a singularity in the hydrodynamic equations,
Θ is insensitive to microphysical detail because the singularity is weak. Our analysis
shows that Θ is determined chiefly by the capillary number Ca = µ`V`/σ based
on surface tension σ, liquid viscosity µ` and a velocity scale V` set by evaporation
kinetics. To illustrate this result of our asymptotic analysis, we show that computed
angles lie close to the curve Θ = 2.2Ca1/4; a small scatter of ±15% about that curve
is the only hint that Θ depends on microphysics. To test our scaling relation, we
use film profiles measured by Kim (1994) to determine experimental values of Θ
and Ca; these are the first such values to be published for the evaporating meniscus.
Agreement between theory and experiment is adequate; the difference is less than
±40% for 9 of 15 points, while the scatter within experimental values is ±25%.

1. Introduction
Temperature control by evaporation of perfectly wetting liquids is fundamental to

heat pipes and like devices. Since the static contact angle Θ0 vanishes for perfectly
wetting systems, part of the solid is covered with a non-evaporating uniform film. The
measured thickness of that equilibrium film is usually a few nanometres (Kim 1994); it
varies inversely with the applied temperature difference. Though the wall temperature
exceeds the saturation temperature at which the phases coexist at common pressure,
the solid attracts the liquid by van der Waals forces more strongly than the vapour,
allowing the superheated liquid to coexist with its vapour across the interface of the
equilibrium film. As the equilibrium thickness is less than the wavelength of light,
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the visible film has an apparent contact line. Except in high-temperature heat pipes,
the liquid is non-metallic, and poorly conducting relative to the solid. Consequently,
heat flow is concentrated near the apparent contact line, and is determined by the
structure of the contact region.

The apparent contact angle Θ is an essential part of that structure. Though Θ0

vanishes for perfectly wetting systems, a non-zero contact angle is seen in experiments
when the wall is heated to drive evaporation (Kim 1994, and references therein). That
angle exists even if the interface is stationary relative to the wall, as in Kim’s
experiments and in heat pipes. The interface can be stationary if there is negligible
resistance to liquid flow, except within the contact region itself. Evaporation of liquid
increases the interfacial curvature locally, and so reduces the liquid pressure relative to
that at infinity. Liquid thus flows from infinity towards the contact region, making a
steady state possible. The pressure difference driving the liquid distorts the interface at
film thickness ∼ 10–100 nm, and so creates the contact angle; unlike Θ0, the apparent
contact angle Θ is thus a flow property.

To establish the significance of Θ, I have shown elsewhere that there is a separation
of scales in practice; Θ is established within a small-scale inner region contributing
a negligible fraction of the evaporation, while heat flow occurs in a large-scale outer
geometry specified by Θ (Morris 2000). The heat flow can thus be found by solving
Laplace’s equation for the temperature subject at the interface to Newton’s law of
cooling with a predicted heat transfer coefficient. That conduction model is derived
initially by scaling and self-consistency arguments, but is then verified by comparing
its predictions with those of detailed simulations by Stephan & Busse (1992). My
analysis of the heat flow differs from others assuming a contact angle, as I derive and
test conditions sufficient for the conduction model to describe a particular system.
The analysis does not determine Θ, because it is based on requiring self-consistency
of a simplified model of heat flow, rather than on analysis of a complete model of
the contact region as a free-boundary problem.

Here, we supplement the conduction model by deriving and testing against Kim’s
experiments a formula for the apparent contact angle of a stationary meniscus. To
predictΘ, we analyse a version of a free-boundary problem posed by Potash & Wayner
(1972), in which creeping flow is coupled to conduction, kinetics, thermodynamics
and interfacial conditions. Fluid motion and heat flow are coupled since pressure
differences within the liquid affect the evaporation kinetics directly; they also shape
the film and so affect the heat flux. Microphysics enters through the disjoining pressure
Π , i.e. the resultant van der Waals force exerted on a unit interfacial area by the
solid, liquid and gas. The disjoining pressure is essential to the model as it prevents
a velocity singularity by setting a minimum scale. Moosman & Homsy (1980) saw
that as Θ2 is usually small, lubrication theory can be used to reduce the model to
a pair of ordinary differential equations for the film thickness and liquid pressure.
DasGupta et al. (1993) state the version of the theory used by Kim & Wayner (1996)
to interpret Kim’s experiments. In that version, the liquid and gas are chemically
identical, but in the experiments, the gas is a mixture of vapour and inert components
(air). Kim & Wayner tacitly assume that the existing theory can be applied if the
thermodynamic properties of the mixture are taken as those of the pure vapour at
the wall temperature and corresponding coexistence pressure.

To clarify the formulation, in § 2 we extend the existing theory to include a gas
consisting of vapour and an inert component. We show explicitly how the partial
pressure of vapour is determined. We also show that for the important case in which
the interface curvature vanishes far from the wall, our dimensionless boundary-value
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problem (7) can be made identical with that for a chemically pure system by an
appropriate choice of scales. To outline our logic, we need the definition of the Biot
number β based on equilibrium film thickness Hs, liquid conductivity K`, and the
heat transfer coefficient h defined by (4f); it is β = hHs/K`, i.e. the ratio of Hs to the
adjustment thickness L = K`/h on which the interface temperature varies from its
value in the equilibrium film to its value at infinity (Morris 2000, p. 60). Commonly,
β � 1.

In § 3, we give an operational definition (8) for the apparent contact angle, i.e. a
definition allowing Θ to be extracted unambiguously from measured film profiles.
The definition is non-trivial as it involves understanding the various scales at which
curvature is important; it is essential to our comparison of theory and experiment.
Our definition is new; though the existing theory is used in the heat transfer literature
to compute contact angles, ours is the first comparison of measured and predicted
values. We then establish the significance of our definition (8) by showing that the
angle we define appears naturally in the formula (10) for the heat flow q∗, i.e. the
spatially integrated flux, across the entire contact region.

In § 4, we use numerical solutions of problem (7) to show the development of
the inner and outer structure as β → 0; the conduction resistance Hs/K` to heat
flow across the film is then small compared with the interfacial resistance h−1 to
evaporation. In § 5, we analyse the inner region defined by β → 0 with the film
thickness of order Hs. Within this region, the conduction resistance is negligible and
the film is isothermal. The inner region does not define the contact angle by itself, for
although Hxx vanishes at its outer edge, the slope there varies slowly with x according
to the formula Hx ∝ 4

√
ln (x/k). Analysis of an outer region is needed to predict Θ;

microphysics affects that region only through the integration constant k.
To interpret k, we then show that the same behaviour for Hx occurs in a purely

hydrodynamic model of the inner region containing no thin film effects; neither the
disjoining pressure, nor the effect of pressure on kinetics is included. As the disjoining
force is essential to setting the minimum scale in (7), its absence from the simplified
model requires us to impose a scale; we take the domain as semi-infinite, and give a
film thickness a at the origin. Because k is now determined by the parameter a, we infer
that in (7), the overall effect of microphysics is to set a scale for the outer solution;
that solution depends weakly on a because the singularity in the hydrodynamic model
for a→ 0 is weak.

In § 6, we complete the prediction of Θ by analysing the outer region, in which
the interface temperature falls from its uniform value within the inner region to its
value at infinity. For this to occur, the film must be thick enough for its conduction
resistance to be significant, although that of the thin inner film is negligible. The outer
limit is thus defined by β → 0 with film thickness of order the adjustment scale. In
this region, thin-film effects are negligible, as at the outer edge of the inner region.
Since Hx varies slowly with x at the outer edge of the inner region, we find the outer
thickness to vary linearly with x at leading order; so Θ is determined by the inner
region, while heat flow is confined to the outer region. This picture is consistent with
that in Morris (2000).

In § 7, we combine results from §§ 5 and 6 to obtain a formula for Θ. We predict
analytically that Θ depends only on the capillary number Ca based on the velocity
scale set by evaporation, and the Biot number B based on the lengthscale k set by
microphysics; we confirm this prediction numerically. Our formula shows that Θ
depends weakly on the microphysical parameter B. To illustrate this result, we show
that computed values of Θ satisfy the relation Θ/Ca1/4 = 2.20±0.25 for the range of
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B occurring in practice; the dependence of Θ on microphysics is thus manifested as
a small scatter about a curve in the (Θ,Ca)-plane. To interpret this result, in § 8 we
extend our hydrodynamic model of the inner region to include the outer region. We
infer that if the Biot number based on the microphysical scale is small, the prediction
for Θ depends only weakly on the specific microphysical model used. To illustrate
this, we show that Hocking’s (1995) analysis of the evaporating meniscus of a partially
wetting liquid yields a like formula for Θ.

In § 9, we determine the heat flow q∗. In § 10, we verify our prediction for Θ against
experimental values we infer from film profiles measured by Kim (1994). Our use of
the experiments differs essentially from that of Kim & Wayner (1996). They fit the
entire computed profile to an observed profile by adjusting the dispersion constant
A appearing in the equation for the disjoining force; so they use a non-equilibrium
process to measure the equilibrium property A. Though they use the fitted profile
to evaluate the local slope at two different film thicknesses, they neither predict
nor measure the apparent contact angle as defined here. By contrast, we stress the
definition, prediction and inference of contact angles because Θ is a portable quantity;
a value inferred from one flow can used to predict heat flow in another.

In § 10, we also give a new method for measuring the applied temperature difference
∆T . As ∆T is too small to measure with a thermocouple, Kim infers it from the
equilibrium film thickness He measured by ellipsometry. However, as the relation
(29) between ∆T and He depends linearly on the dispersion constant A, his method
introduces a much stronger dependence on microphysics than that existing in the
physical problem. That difficulty does not arise in our method. We show that since
β � 1 in the experiments, ∆T can be inferred from q∗ by solving a conduction
problem in which we account for interface curvature. The result is equation (30)
giving ∆T in terms of known material properties and measurable quantities: namely
Θ, the radius of curvature R of the large-scale interface, and the total heat flow q∗
inferred from the evaporation rate. For just one experiment, Kim measured the total
evaporation rate; for that case, values given by the two methods agree closely. Our
method involves neither microphysics, nor ellipsometry, for to infer Θ, we use only
the part of the film profile measured by interferometry.

In § 11, we relate this study to my previous work, in which scaling is used to derive
conditions sufficient for q∗ to be determined by a conduction problem. We show here
that those conditions (Morris 2000, equations (3a)–(3c)) are satisfied if β → 0; as
claimed there, this analysis implies the conduction model.

To end this introduction, we explain how the prediction of contact angles for the
stationary evaporating meniscus differs from the prediction of the dynamic contact
angle for a spreading isothermal drop; these problems are limiting cases for a spread-
ing volatile drop. The contact angle for the stationary evaporating meniscus is a
property of the small-scale flow driven by evaporation; it is independent of the large-
scale geometry if the pressure difference across the large-scale interface is vanishingly
small compared with that across the interface of the equilibrium film. Specifically, our
equation (10b) implies that in the limit of vanishing large-scale curvature, the slope
approaches a limit far from the apparent contact line.

For isothermal spreading, the situation is slightly more complicated. Following
Tanner (1979), a quasi-steady problem for the film thickness can still be posed by
taking axes moving with the contact line, and imposing a constant curvature at
infinity. However, in the limit of vanishing large-scale curvature, the slope here does
not approach a limit as x→ ∞ but instead continues to vary weakly as (ln x)1/3 (e.g.
Joanny 1986, equation 38). Because the double limit does not exist, the contact angle
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Figure 1. Definition sketch.

depends on the curvature of the large-scale meniscus; since the slope diverges only
weakly with x, the curvature-dependence is weak, as can be seen from equation (7.22)
of Cox (1986). The spreading problem differs from that of the stationary meniscus
owing to a weak, but essential, dependence on the large-scale curvature.

Even in the spreading problem, the outer geometry influences the contact angle
only through a length scale. So in either problem, Θ can be determined from a local
analysis, and it is not necessary to follow Hocking (1995) in incorporating details of
the outer geometry in the formulation. We thus abstract the idea of a contact angle
from the detail of the large-scale geometry, so that Θ becomes a portable quantity
like the static contact angle Θ0.

2. Boundary-value problem
We start with terminology and notation. Figure 1 shows the geometry. We extend the

existing theory of the evaporating meniscus by assuming that the liquid is chemically
pure, but that the atmosphere consists of two components: one is inert; the other is
the vapour phase of the liquid. This formulation includes as a special case that of
DasGupta et al. in which the gas is pure vapour. As shown in figure 1, the total gas
pressure is Pa, and the local value of the partial pressure of vapour is Pv; at infinity,
Pv approaches the uniform value Po. The saturation temperature To is defined as
the temperature at which the liquid and its vapour phase coexist when both are at
common pressure Po. The uniform temperature at infinity is T∞, and the uniform
wall temperature is Tw > T∞. (Analysis of the meniscus on a conducting slab shows
that for small liquid–solid conductivity ratios K`/Ks, it is a good approximation to
assume uniform wall temperature for computing Θ. Figure 8 of Morris (2000) shows
that for K`/Ks → 0, the solid temperature varies only at a scale large compared with
the adjustment thickness L. Because Θ is established at a scale smaller than L, it can
be calculated by taking Tw as uniform.) Subscripts ` and v denote the liquid and its
vapour phase. All properties are evaluated at the wall temperature. The sound speed
of the vapour phase is C , and the specific heat ratio is γ. The thermal conductivity,
latent heat, dynamic viscosity, density and surface tension are K , Q, µ, ρ and σ.

Next, we give the simplifying assumptions; they are the same as those of DasGupta
et al. We take the interface as stationary relative to the wall, and the interface slope



6 S. J. S. Morris

as small. We assume (Tw − T∞)/T∞ � 1; so we take the temperature as uniform to
calculate material properties. We take convective nonlinearities as negligible since the
Reynolds and Péclet numbers based on the total evaporation rate are small. Lastly,
we discuss the equation for Π . Miller & Ruckenstein (1974) show that if the interface
slope is small, the disjoining pressure Π at a point is determined by the local film
thickness H . We assume that Π = A/H3, where A is the dispersion constant. Though
Levinson et al. (1993, figure 3) show experimentally that this relation holds only at
thicknesses less than a few nanometres, we use it for all H as a model to prove that
Θ and q∗ are insensitive to microphysics for perfectly wetting liquids.

Now we describe the kinetic equation. Let P(P`, T ) be the coexistence pressure;
i.e. the partial pressure of vapour required for the liquid to coexist with its vapour
phase at temperature T when the liquid pressure is P`. Also, let λ =

√
2γ/π. By

kinetic theory, the evaporative mass flux J at a point on the interface is related to
the local values of the temperature T , liquid pressure P` and partial pressure Pv by
the equation CJ/λ = P(P`, T )− Pv; see Cammenga (1980, equations 29 and 65). So
liquid evaporates if the local partial pressure of its vapour phase is less than the
local coexistence pressure P. Small pressure differences exist within the gas to push
vapour created at the interface to infinity. Like DasGupta et al., we assume these
pressure differences to be negligible compared with Po, so that Pv = Po; we thus
assume that the evaporation rate is determined by processes within the liquid. By the
assumption Pv = Po, and the definition of P, P(Po, To) = Po. So the kinetic equation
can be written CJ/λ = P(P`, T ) − P(Po, To). As departures from thermodynamic
equilibrium are small in practice, we linearize the right-hand side of this expression.

Next, we give the dimensional governing equations. In the limit of vanishing
interface slope, the film thickness H(x), interface temperature T (x), evaporative mass
flux J(x) and liquid pressure P`(x) satisfy

ρ`
d

dx

(
H3 dP`

dx

)
= 3µ`J,

ρ`CJ/(λρv) = (P` − Po) + ρ`Q(T − To)/To

K`(Tw − T )/H = QJ, Pa − P` = σ
d2H

dx2
+ A/H3


for −∞ < x < ∞, (1a–d)

P` → P`∞, T → T∞ as x→∞, (1e, f)

dH

dx
→ 0 as x→ −∞. (1g)

In (1f), P`∞ = Pa − ∆P . Similar equations are posed by Moosman & Homsy (1980),
and DasGupta et al. (1993); however, (1) differs slightly from those formulations, as
we discuss in the next two paragraphs.

We now interpret problem (1). (i) In writing the mass balance (1a), we assume no
slip at the wall, and no shear stress at the interface. We thus take the thermocapillary
stress as negligible; we justify this assumption in Appendix A. (ii) The linearized
kinetic equation (1b) involves the partial pressure Po, not the total pressure Pa. (iii)
The enthalpy balance (1c) states that all heat conducted from the wall is absorbed
as latent heat at the interface; this equation is a consistent approximation to the
exact jump condition given by Delhaye (1974, equation 27). (iv) The normal stress
balance (1d) is affected by the inert gas since the resultant pressure force Pa − P` on



Contact angles for evaporating liquids 7

an interfacial element depends on the total gas pressure Pa, not merely on the partial
pressure Po. Equation (1d) differs from the corresponding equation (1) in DasGupta
et al. (1993); there the gas is taken as pure vapour. (v) We shall see following (2)
that for the problem to be well posed either Po or T∞ must be given, as in boundary
condition (1f). (vi) Boundary condition (1g) ensures that no horizontal mass flow is
imposed on the film at −∞.

The kinetic equation (1b) differs in one essential from the corresponding equation
(4) of DasGupta et al. (1993). There, instead of the saturation temperature To and
partial pressure Po, we see the temperature T∞ and what they call ‘the bulk vapor
pressure of the liquid at temperature’ T∞, i.e. P(Po, T∞). By their (19), we see that
P` 6→ P(Po, T∞) at infinity. The evaporation rate predicted by their kinetic equation
(4) therefore does not vanish at infinity. However, the heat flux to the interface
vanishes as H → ∞ by our (1c) (their equation 6). So their formulation does not
conserve energy exactly; our formulation does, since the condition J → 0 at infinity
determines the partial pressure Po, as we now show.

By using the condition that J → 0 at infinity in the kinetic equation (1b), we obtain

0 = (P`∞ − Po) + ρ`Q(T∞ − To)/To, so (T∞ − To)/To = −(P`∞ − Po)/(ρ`Q). (2a, b)

Equation (2b) gives To and Po = P(Po, To) as functions of the boundary values P`∞
and T∞; so either T∞ or Po must be given for the problem to be well-posed. This
equation formulates the Kelvin effect; when the pressure P`∞ in the liquid is less than
that Po in the vapour, molecules tend to stick to the interface, allowing the phases to
coexist at a temperature T∞ higher than that To at which they coexist at common
pressure Po; see Fisher & Israelachvili (1981) for experimental confirmation.

We can now eliminate Po and To from (1). By subtracting (2a) from (1b),

ρ`CJ/(λρv) = P` − P`∞ + ρ`Q(T − T∞)/To. (3)

In the last term, To can be replaced by T∞ as |T∞−To|/To � 1 in practice. So Po and
To are eliminated, and the formulation conserves energy. Our problem now consists
of (1) with (1b) replaced by (3).

Next, we define scales. Let ∆T = Tw − T∞, and T = ∆T/To. Also let

Ps = ρ`QT, Hs = (A/Ps)
1/3, Ls = (σHs/Ps)

1/2, Θs = Hs/Ls, (4a–d)

V` = λρvQT/(ρ`C), h = ρ`QV`/∆T = λρvQ
2/(CTo). (4e, f)

In (4a), λ =
√

2γ/π, as defined in the paragraph preceding (1). We show, following
(6), that Ps is the pressure difference P`∞ − P`(−∞) within the liquid. Next, the
definitions of Hs and Ls ensure that all three terms in the normal stress balance
(1d) are comparable when the pressure difference across the interface is of order Ps;
Θs is the corresponding unit of slope. Both lengthscales are typically nanometres;
in the example of Stephan & Busse (1992), Hs = 0.9 nm, and Ls = 3 nm. Further,
the velocity scale V` for the liquid flow normal to the interface is obtained from the
kinetic equation (3) by writing J ∼ ρ`V`, and balancing terms. Moreover, h is the
evaporative heat transfer coefficient, as in Cammenga (1980, p. 405); the pressure
term in (3) is negligible if |P` − P`∞| � Ps, which holds in thick films for which
H � Hs. Equation (3) then reduces to J = λρvQ(T − T∞)/(CTo), and the heat flux
QJ = h(T −T∞), where h is given by (4f). Lastly, for use below, we note the existence
of a second pressure scale; from the continuity equation, the tangential velocity scale
U` = LsV`/Hs, and from U` and the lubrication equation we find that a pressure
difference of order Pf = 3µ`L

2
sV`/H

3
s is needed to drive flow at the scale Hs.
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ε = ∆P/Ps β = hHs/K` f = 3µ`L
2
sV`/(PsH

3
s ) Ca = µ`V`/σ

0.000009 0.2 0.2 0.0009
0.004 0.02 1.3 0.002
0.06 0.01 7 6× 10−9

Table 1. Parameters in the theory. Scales are defined by (4).

In the rest of this work, dimensional variables are starred. A subscript x denotes
differentiation. We define the dimensionless liquid pressure P , interface temperature
T , film thickness H , position x and evaporative mass flux J by

P = (P∗` − P`∞)/Ps, T = (T∗ − T∞)/∆T , H = H∗/Hs,

x = x∗/Ls, J = J∗/(ρ`V`). (5a–e)

We non-dimensionalize using ∆T = Tw − T∞ rather than the superheat Tw − To.
Though our dimensionless problem (7) thus differs from that of DasGupta et al., ∆T
has a physical significance which Tw −To lacks; the heat flow varies with ∆T , but To
does not occur within the flow unless the interface is linear at infinity.

The dimensionless form of (1) is

(1− T )/H = βJ, J = P + T , (H3Px)x = fJ, ε− P = Hxx + 1/H3, (6a–d)

Hx → 0, as x→ −∞, P → 0, as x→∞. (6e, f)

The dimensional pressure difference within the liquid is Ps since (6) implies that
P → −1 as x→ −∞.

Problem (6) contains three independent parameters, namely ε, f and β. The pressure
ratio ε = ∆P/Ps compares the pressure difference ∆P across the interface at infinity
to the pressure difference Ps driving the liquid flow. ε determines if there is motion
or not. The motion is negligible in the limit Tw − T∞ → 0; then Ps → 0, and ε→ ∞.
Because |P | 6 1, the left-hand side of (6d) can then be approximated by ε so that
the interface shape is not affected by the motion. At the other extreme, Ps � ∆P so
that ε → 0. The interface is then strongly perturbed by the flow; we shall see that a
well-defined apparent contact angle then exists. The other parameters f and β control
the structure of the resulting flow. The flow resistance f = Pf/Ps measures the viscous
resistance to evaporation. Lastly, as previously defined, the Biot number β = hHs/K`

determines the ratio of the conduction resistance of the liquid film to the interfacial
resistance.

In table 1, we give the definitions of ε, β and f in terms of the scales defined by
(4); we also give typical values for these parameters and for the capillary number
Ca = µ`V`/σ. Numerical values in rows one and two are for the simulations of
Stephan & Busse (1992), and Schonberg, Das Gupta & Wayner (1995, case 2 of table
1). Those in the third row are for the experiments of Kim (1994, case 4 of table 5.1);
they typify the values given for his experiments in our table 2. Table 1 shows that
usually ε � β � 1, and f ∼ 1. The exception is that in Kim’s experiments ε is not
small; we discuss the significance of this following figure 2.

Like Moosman & Homsy (1980), we express (6) in terms of P and H alone by
eliminating T between (6a) and (6b). So J = (1 + P )/(1 + βH). By substituting for J
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in (6c), we obtain

(H3Px)x = f(1 + P )/(1 + βH), ε− P = Hxx + 1/H3 for −∞ < x < ∞, (7a, b)

Hx → 0 as x→ −∞, P → 0, as x→∞. (7c, d)

Problem (7) is solved by standard shooting methods, as in DasGupta et al. (1993).
For ε 6= 0, (7) differs from the corresponding problem of DasGupta et al. (1993,

equations 15–19) owing to a different choice of scales. For arbitrary ε, our problem
can be transformed into that of DasGupta et al. by a linear transformation in which
the coefficients depend on ε.

3. Definition and significance of Θ
Though the theory of the evaporating meniscus is often used to compute contact

angles, a precise definition of Θ has not been given before. Such a definition is
essential to our comparison of theory with experiment. By (7b, d), Hxx → ε as
H → ∞, and it can be verified that for ε 6= 0, problem (7) admits a solution such
that H ∼ 1

2
εx2 + c0x + c1; here, c0 and c1 are integration constants. If the parabola

so defined has a zero, a contact angle is defined by the slope at H = 0. An apparent
contact angle is thus defined by first computing (or observing) the constant curvature
profile for large H , and then extrapolating it to H = 0. Of course, the apparent
contact line and contact angle so defined will coincide with what is observed optically
only if the entire observed interface has constant curvature. Because we shall see that
in the experiments, the curvature becomes uniform only at film thicknesses exceeding
the smallest measured thickness, we need a way to identify the region of uniform
curvature in measured profiles; two-fold differentiation of data is not practicable as
each differentiation amplifies noise.

To identify the constant-curvature region, we multiply the asymptotic relation
Hxx ∼ ε by 2Hx, and integrate in x to show that H2

x ∼ 2εH + b̃2, where b̃ is an
integration constant. When the interface curvature is constant, a plot of H2

x against
H is therefore linear; the curvature and squared contact angle are found from the
slope and intercept of that line. As the solution of (7) depends on the parameters β,
ε and f, so does the integration constant b̃. From table 1, we see that of the three
parameters, only ε depends on the large-scale geometry (through ∆P ). For ε→ 0, the
apparent contact angle is therefore a property of the small-scale flow alone; otherwise
it depends on ε, and so on the large-scale geometry. The importance of the limit in
defining the contact angle for evaporating systems has not been previously recognized.

We therefore define the apparent contact angle by Θ = Θsb, where

b2 = lim
ε→0

lim
H→∞(H2

x − 2εH) so that Θ/(3Ca)1/4 = b/f1/4. (8a, b)

Here, we have used the identity Θs = (3Ca/f)1/4, which follows from the definitions
of Pf , Ls, Θs and Ca. In the definition (8a), the inner limit H →∞ picks out the
constant curvature part of the interface; by the previous paragraph, the argument
of the limit then approaches the constant b̃2. This inner limit also ensures that the
apparent contact angle defined by (8) is independent of film thickness. The outer
limit ε→ 0 ensures that the apparent contact is determined purely by the small-scale
flow. By (8a), b(β, f) = limε→0 b̃ ; we call b the slope parameter, and b̃ the false slope
parameter. The precise definition (8) is essential as the term ‘apparent contact angle’
is used loosely in the literature, as we discuss in § 10.
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Figure 2. False slope parameter b̃ computed for β = 0.01 and f = 7 as a function of ε without
approximation from the solution of problem (7). As defined below (8), b̃2 = limH→∞(H2

x − 2εH).
The parameters β and f are defined in table 1.

Figure 2 illustrates the approach to the limit (8a) by showing the false slope
parameter b̃ as a function of ε for β = 0.01 and f = 7; these values are for Kim’s
experiment summarized in row 3 of table 2. For the value ε = 0.06 appropriate to
Kim’s experiment, the figure shows that b̃ + 2.5, while the limiting value b = 3.03.
So the experimental value of the contact angle inferred from that measured profile
is likely to be ∼ 20% too low owing to the effect of large-scale curvature; as we
shall see at the end of § 10, the discrepancy is even larger for some experiments. This
example shows that in the experiments, the contact angle depends to some degree
on the pressure difference applied across the large-scale interface. By contrast, we
see from table 1, that in typical applications ε is small enough for Θ to be a flow
property. (ε is smaller in applications than in Kim’s experiments because the applied
temperature difference is larger in applications.)

Next, we demonstrate the significance of Θ for the heat flow. The dimensional heat
flux at x is (K`∆T/He)(1−T )/H , i.e. (K`∆T/He)(β/f)(H3Px)x, by (6a) and (6c). The
rate q∗(x) at which heat flows across the interval (−∞, x) of the film is found by
integration in x. So

Θq∗/(K`∆T ) = (βb/f)H3Px. (9)

Here, (8) has been used to replace bHs/Ls by Θ. The total heat flow q∗(x) between
−∞ and x is proportional to the mass flow rate H3Px at x because all mass flowing
past point x towards −∞ is evaporated between −∞ and x. In the rest of this paper
we study the case ε = 0; we treat the effect of a small non-zero curvature on the
outer meniscus in a subsequent paper.

We can now find the heat flow for large x. For ε = 0, (7) admits a solution in
which H ∼ bx as x → ∞. (Equation (8a) is then satisfied trivially.) For large x, the
solution thus exhibits an apparent contact line; we take x = 0 there. For x→ ∞, the
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right-hand side of (7a) simplifies since P ∼ 0 and H ∼ bx. By integration,

H3Px =
f

βb
ln
(x
δ

)
+ o(1), Hx = b− f

2βb4
x−1 ln x+ o(1) as

x

δ
→∞. (10a, b)

Here, δ is an integration constant. We give the second term in (10b) to stress that
Hx approaches a limit at infinity. As stated in § 1, unlike the meniscus of a spreading
drop, the stationary evaporating meniscus has a well-defined contact angle that is a
property solely of the small-scale flow.

The heat flow is given for large x by (10a) and (9) as

q∗Θ/(K` ∆T ) = ln (x/δ) + o(1). (11)

To interpret this result, we recall that the interface temperature T → 0 at infinity, by
(1a). Far from the apparent contact line, problem (7) thus describes conduction in a
wedge of angle Θ bounded by the isotherms T = 1 (wall) and T = 0 (interface). The
heat flux across the wedge varies asymptotically as 1/x, so that the heat flow varies
as ln x, as in (11).

The contact angle Θ defined by (8) thus appears naturally in the outer limit (11)
of the heat flow. Next, we predict Θ for the case β → 0 usual in applications. As part
of the analysis, we deduce the conduction model for heat flow in the contact region.

4. Effect of vanishing Biot number
To begin, we use numerical solutions to illustrate the development of the solution

as β → 0. Figure 3 shows the interface temperature T and evaporative mass flux J
as a function of x = x∗/Ls, where Ls is defined by (4c). The curves are computed
without approximation from (7) for ε = 0. We see that as β → 0 with H fixed,
T → 1; the interface temperature approaches the wall temperature as the conduction
resistance vanishes. Though the inner film is nearly isothermal, the curve for J shows
there is still evaporation from it; by (6a, b) with β = 0, J = 1 + P which is not zero
as neither H nor P is uniform. The pressure difference driving this flow distorts the
interface and creates the contact angle. The figure also shows that the isothermal
region asymptotically contributes a negligible fraction of the evaporation because
the region to the left of the plateau in J contributes an amount of order unity to
the integral of J , while the contribution of the plateau increases with plateau length.
Figure 3 suggests the existence for small β of a separation of scales such that Θ
is established at small scales, while evaporation occurs across the large-scale outer
meniscus. Next, we quantify this structure by asymptotic analysis.

5. The inner isothermal region
We define the inner limit, as in § 1, by β → 0 with fixed H and f. In that limit, (7)

simplifies to

(H3Px)x = f(1 + P ), −P = Hxx + 1/H3 for −∞ < x < ∞, (12a, b)

P = −1 as x→ −∞, P → 0 as x→∞. (12c, d)

Boundary condition (7d) on P at infinity is applied here to the inner solution as we
prove, following (15), that the pressure difference in the outer region is negligibly
small in β.
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Figure 3. Numerical solution of problem (7) for f = 1 and the values of − log10 β = 1, 3 and 5
shown on the figure.

Problems (12) and (7) differ as the evaporation term on the right-hand side of (12a)
does not vanish at infinity. Since the flow continues to distort the interface, we find
that the slope does not approach a limit. To prove this we need the large x behaviour
of the solution; that behaviour is also useful as it shows how microphysics affects Θ.
From a numerical solution of (12), we find that H grows at infinity so as to make
1� Hxx � 1/H3. The disjoining force 1/H3 is thus asymptotically negligible in (12b),
so that P ∼ −Hxx. Also, since P → 0 by boundary condition (12d), the pressure
term on the right-hand of (12a) is asymptotically negligible. Thin-film effects are thus
negligible at the outer edge of the isothermal region, and the behaviour of (12) is
asymptotically determined by the conditions −P ∼ Hxx, (H3Px)x ∼ f and P (∞) = 0.

To interpret these conditions, we define a simplified hydrodynamic model by the
problem

(Ĥ3P̂x)x = 1, P̂ = −Ĥxx for 0 6 x < ∞, (13a, b)

Ĥ = a, Ĥx = 0 = P̂x, at x = 0, (13c, d, e)

P̂ → 0, as x→∞. (13f)

By comparing (13a, b) with the relations preceding them, we see that P ∼ f1/4P̂ and
H ∼ f1/4Ĥ . Because this hydrodynamic model does not include the disjoining force,
there can be no equilibrium film, and there is nothing to impose a minimum scale.
To prevent a velocity singularity, we must impose a scale; so we take the domain
as semi-infinite, and the initial thickness a as non-zero in (13c). Also, because the
differential equations (13a, b) are invariant under the substitution x→ −x, they admit
a solution in which P̂ and Ĥ are even functions. By imposing the homogeneous
boundary conditions (13d–f), we select that solution to ensure that Θ is determined
as part of the solution, rather than being imposed upon it.
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Figure 4. Scale k defined by (14) as a function of the flow resistance f defined in table 1.

We next discuss the large x behaviour of the solution of (13). We show in Appendix
B that

Ĥ ∼ x(4z)1/4

∞∑
n=0

Anz
−2n where z = ln (x/k), (14a, b)

k is an integration constant, and the first four coefficients are A0 = 1, A1 = −21/64,
A2 = −16611/8192 and A3 = −1099 77903/26 21440. Because the series (14) is derived
from (13), which is in effect an approximation to (12), we note that the error made
by truncating (14) at any order is large compared with that made in deriving (13)
from (12). (The truncation error is only logarithmically small in x; but the error made
by approximating (12) by (13) is much smaller as the inequalities 1 � Hxx � 1/H3

hold with algebraically small error in x.) So all terms in (14) are significant for both
problems (12) and (13).

The asymptotic series (14) describes a family of solutions parameterized by the
integration constant k. The series satisfies the differential equations (13a, b) and
the boundary condition (13f) at infinity. From this asymptotic series, we see that
microphysics influences the outer solution only through the integration constant
k. To interpret that constant, we note that because the simplified model (13) is
equidimensional, all lengthscales like k in its solution are proportional to the initial
thickness a. So k = k1a, and we find that k1 = 2.53 by fitting the numerical solution
of (13) for a = 1 to (14). Microphysics therefore affects the outer solution, and so Θ,
only through the thickness a seen at the apparent contact line by the distant flow.
For problem (12), a is an effective thickness analogous to the displacement thickness
in boundary-layer theory. (We digress to note that since k ∝ a, the series (14) implies
that Ĥ does not approach a limit as a → 0; so we must take a 6= 0, as in (13c).)
Lastly, we find k for problem (12) which includes the disjoining force.

Figure 4 shows the value of k obtained by fitting the numerical solution of the inner
problem (12) to the first 4 terms of the asymptotic series (14). The figure includes the
range of f common in applications, and it shows that k varies by only a factor of two
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in practice. Because k = 2.53a, the effective initial thickness a varies between about 2
and 4. The figure shows that Θ is insensitive to microphysical detail.

From the leading term in (14), we see that Ĥx ∼ {4 ln (x/k)}1/4; the slope does not
attain a limit at the outer edge of this region since the inner evaporation rate does
not vanish. As we know from (10b) that Hx attains a limit at infinity, we must now
include the decrease in evaporation rate occurring in the large-scale outer region.

6. The outer adjustment region
To begin, we estimate the outer film thickness. The defining property of this region

is that both J and T fall to zero within it. However, by elimination of J between (6a)
and (6b), T = (1 − βPH)/(1 + βH). We see T can vary only if H = O(β−1) so that
βH does not vanish with β; the corresponding dimensional thickness H∗ is of the
order of the adjustment thickness scale L. We define the outer limit as β → 0 with
βH fixed.

Next, we find the scale `′ parallel to the wall. By (14), βH ∼ 1 when x ∼ `′ = k`,
where ` is defined by βk`(4f ln `)1/4 = 1. We show below (20) that the corresponding
dimensional length `′∗ is related to Θ by Θ`′∗/L → 1 for β → 0. The outer scales
normal and tangent to the wall are thus L and L/Θ, as in the phenomenological
theory (Morris 2000, § 2.2).

We define outer variables x̃, H̃ and P̃ by

x̃ = x/`′, H̃ = βH, P̃ = β`′2P , where B`(4 ln `)1/4 = 1, B = βkf1/4.
(15a–e)

The definition of the scale ` in the previous paragraph is repeated as (15d, e). That
definition implies that ` = O(1/β) to logarithmic accuracy so that ` is algebraically
large in the small parameter β. Further, ` is determined completely by the parameter
B defined by (15e). B is a Biot number based on the effective film thickness H(0)
at the contact line since H(0) ∼ f1/4a, and a ∝ k. Next, the pressure scale in (15c)
follows from the balance −P ∼ Hxx, and the scales for x and H . We see that P = O(β)
to logarithmic accuracy, so that the outer pressure is algebraically small in β. This is
consistent with the boundary condition (12d) imposed on the inner analysis, namely
P (∞) = 0.

We obtain simplified equations for H̃ and P̃ in two steps. By substituting (15) into
the governing equations (7), we obtain without approximation (H̃3P̃x̃)x̃ = (4 ln `)−1(1+
P̃ /(β`′2))/(1 + H̃), and −P̃ = H̃x̃x̃ + (`′β2)2/H̃3. We then simplify these equations by
taking as negligible all terms algebraically small in β. Since `′ ∼ 1/β, the effect of
pressure on evaporation is negligible in the first equation, and the disjoining force
is negligible in the second. Thin-film effects are therefore negligible throughout the
adjustment region, as they are at the outer edge of the inner region.

Within the adjustment region, H̃ and P̃ are thus given with algebraically small
error in β by

(H̃3P̃x̃)x̃ = (4 ln `)−1(1 + H̃)−1, −P̃ = H̃x̃x̃ for 0 6 x < ∞. (16a, b)

The boundary conditions are H̃x̃x̃(∞) = 0, and a matching condition on H̃ as x̃→ 0
yet to be derived. The domain is semi-infinite since x̃ and H̃ both vanish as β → 0
at a fixed large value of the inner coordinate x; the outer solution has an apparent
contact line at x̃ = 0 because the inner film is thin with a short horizontal scale.
Problem (16) allows the existence of an apparent contact angle, for as x̃ → ∞,
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(H̃3H̃x̃x̃x̃)x̃ → −1/(4H̃ ln `), which is readily shown to admit a solution growing
linearly at infinity.

The form of the outer expansion is suggested by writing the outer limit H ∼ f1/4Ĥ
of the inner isothermal solution in terms of the outer variables (15), then using
the binomial theorem for ` → ∞ with x̃ fixed and possibly small to show that
H̃ = x̃+ x̃ ln x̃ /(4 ln `) + o(1/ ln `), at the outer edge of the inner region. This result
suggests correctly that throughout the adjustment region

H̃ = x̃+ H̃1 /(ln `) + o(1/ ln `), P̃ = P̃1/(ln `) + o(1/ ln `) for β → 0. (17a, b)

The coefficient functions H̃1, . . . are independent of β.
We now consider the outer expansion (17) to leading order, i.e. H̃ ∼ x̃ and P̃ ∼ 0.

These expressions clearly satisfy (16), and match to the inner solution. Throughout
the adjustment region, H̃x̃ is therefore uniform to leading order in 1/(ln `). To explain
this, we note that by (14), Hx = O((ln x)1/4) at the outer edge of the inner region,
so that the slope there is slowly varying in x; if x is replaced by mx, where m is an
arbitrary constant, (ln x)1/4 is unchanged to leading order in the large quantity x. The
inner isothermal region thus determines Θ at leading order, as claimed at the end of
§ 4. However, the outer adjustment region must be analysed to find the effective value
of x, namely `′, at which Hx is evaluated. The outer analysis is, although necessary
to determine Θ, even though the details at leading order are simple.

To test the analysis, we compare the predicted evaporative mass flux J , and interface
temperature T with values computed without approximation from (7). J and T are
given in terms of H and P by the enthalpy balance (6a) and kinetic equation (6b).
Because the outer film is thick, the pressure term in (6b) is negligible so that J = T
and, by (6a), J = 1/(1 + H̃). Since H̃ = x̃ at leading order, J = T = 1/(1 + x̃).

Figures 5(a) and 5(b) show the evaporative mass flux J and the interface temperature
T as functions of x̃ = x/`′; here, `′ is defined by (15a). For the numerical solutions,
the origin is taken at the apparent contact line, so that H ∼ bx + o(1) for x → ∞.
Though the inner structure near x̃ = 0 is not visible at the scale on which the figures
are plotted, the numerical solution does resolve that behaviour. Together, these figures
verify that as β → 0, J and T approach a common asymptote 1/(1 + x̃), shown as
the broken curve. This establishes two points. First, the definition of `′ enables us
to collapse numerical solutions for β → 0 with x̃ 6= 0. Secondly, the leading-order
solution for the adjustment region describes conduction across a liquid wedge with
contact angle determined by the isothermal region. At leading order, our analysis of
problem (18) is thus consistent with the phenomenological model.

We now find the second-order terms in (17). At that order, the interface is perturbed
by the non-uniform pressure needed to drive the outer flow. To find that perturbation,
we form equations for H̃1 and P̃1 by substituting (17) into (16), and applying the limit
`→∞, i.e. β → 0. So

4(x̃3P̃1x̃)x̃ = 1/(1 + x̃), −P̃1 = H̃1x̃x̃ for 0 6 x̃ < ∞, (18a, b)

H1/(x̃ ln x̃)→ 1/4 as x̃→ 0, (18c)

P̃1 → 0, as x̃→∞. (18d)

The differential equations (18a, b) describe quasi-parallel flow in a film of known
thickness x̃. Equation (18a) states that the flow rate varies with x̃ owing to evaporation
at a known rate imposed by the enthalpy balance (6a), and the leading-order solution.
The pressure adjusts to drive this imposed flow, and the normal stress balance (18b)
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Figure 5. (a) Evaporative mass flux J and (b) interface temperature T as functions of x̃ = x/`′
where `′ is defined by (15). For both figures f = 1, and − log10 β = 1, 2 and 3 shown on the curves.
Solid curves, values computed from (7). Broken curve, leading-order outer solution for β → 0.

then determines the perturbation to the interface shape, and the correction to Θ. We
find the matching condition (18c) by equating the inner limit x̃ → 0 of the outer
solution (17a) to the outer limit of the inner solution.

We find the perturbation pressure and film thickness by integrating (18a, b), and
repeatedly using the growth condition (18c). So 4x̃3P̃1x̃ = ln (1 + x̃)

8P̃1 = ln (1 + x̃−1)− x̃−2 ln (1 + x̃)− x̃−1, (19a)

8H̃1x̃ = 3− x̃−1 ln (1 + x̃)− (2 + x̃) ln (1 + x̃−1). (19b)

By (19b), H̃1x̃ → 1/4 as x̃→∞. The slope perturbation thus varies on the same scale
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Figure 6. Interface perturbation and pressure within the adjustment region calculated from the
second-order outer solution (19). As defined by (15) and (17), x̃ = x/(k`), P̃1 = P β(k`)2 ln `, and

H̃1 = (H̃ − x̃) ln `.

as T . This does not contradict the phenomenological model, as that model uses only
the linear interface predicted by the leading-order solution. (As an aside, we note that
for arbitrary β, (10b) implies that Hx attains a limit when 2βb5x � f ln x, whereas
the small β analysis implies that the limit is attained for x � `′. To show that these
results are consistent, we need only use the definition (15d) of `′, and equation (20)
below for b.)

Figure 6 shows the perturbation pressure P̃1 = P β(k`)2 ln `, and film thickness
H̃1 = (H̃ − x̃) ln ` within the adjustment region. H̃1 vanishes at the apparent contact
line, as required by the matching condition (18c). The interesting feature is that H̃1

changes sign; the pressure perturbation due to the outer flow thus reduces the total
thickness H near the wall, but increases it for large x̃. This happens because P̃1 → −∞
as x̃→ 0, so that the interface is drawn down near the apparent contact line, as shown
by the region of negative H̃1. At infinity, however, the thickness is increased since the
negative pressure makes the curvature everywhere positive, so that the perturbation
slope H̃1x̃ is ultimately positive. This distortion of an otherwise linear interface affects
the heat flow by changing the conduction path, as we discuss following (26).

7. Predicted contact angle
To find Θ, we determine the slope parameter b using (17), the result H̃1x̃ → 1/4,

and the definitions (15) of the outer variables. So, for β → 0,

b/f1/4 ∼ (4 ln `)1/4{1 + 1/(4 ln `)}, βb`′ ∼ 1 + 1/(4 ln `). (20a, b)

The relative error in each of these expansions is o(1/ ln `). Equation (20b) follows from
(20a), and the definition (15d) of `. When interpreted, (20b) relates the dimensional
length `′∗ = `′Ls to the adjustment thickness L; since `′ ∼ 1/(βb) by (20b), and
β = Hs/L by the definition of L, it follows that `′∗ ∼ L/Θ at leading order in β. The
outer lengthscale along the wall is thus L/Θ, as claimed above (15).



18 S. J. S. Morris
3.0

2.5

2.0

1.5
0.01 0.10 1.00

B

(a)

(b)

£/Ca1/4

Figure 7. Θ/Ca1/4 as a function of B. Symbols, values computed without approximation from
problem (7), and the definition (8) of b: +, f = 20; ×, f = 1; ◦, f = 0.05. Line, fit (22a) to computed
values; curve (a), first-order asymptotic analysis; curve (b), telescoped two-term result (21). k(f) is
given by figure 4. See text below (21) for discussion, and definitions of B and Ca.

Equation (20a) expresses the slope parameter as the sum of two effects. The first, or
leading-order, term in braces is the contribution of the inner isothermal region. The
second, and smaller, term represents the change in slope across the outer adjustment
region. The binomial theorem can be used to combine those terms to show that
b/f1/4 = 4

√
4 ln (e`) + o(1), where e = exp 1. By substituting this expression into (8b),

we find that for β → 0

Θ = 4
√

12Ca ln (e`) + o(1), here B`(4 ln `)1/4 = 1. (21a, b)

Equation (15d) for ` is repeated as (21b). The Biot number B = βkf1/4, as defined by
(15e). The parameters β, f and Ca are defined in table 1; in particular, the capillary
number Ca = µ`V`/σ where the velocity scale V`, as defined by (4a). We note that
because the interface slope is assumed small in writing the governing equations (1),
our analysis holds if Ca→ 0.

Though we shall see that equation (21) accurately predicts Θ, it has a more
significant implication; contact angles for different values of β, f and Ca should
lie on a single curve when Θ/Ca1/4 is plotted against B. In figure 7, we test this
prediction. Symbols denote values computed without approximation for f = 0.05, 1
and f = 20, and values of β between about 0.0003 and 0.3. These values include the
range typical of applications using non-metallic liquids.

Figure 7 shows that the scaling suggested by (21) collapses the numerical results
even for B of order unity. This empirical result implies that, as predicted by our
analysis, the only effect of microphysics on Θ is to impose the effective film thickness
used to define B. Further, we see that Θ/Ca1/4 depends only weakly on B. In the
examples 0.1 < B < 1.1, and the figure shows that over this range

Θ/Ca1/4 = 1.95− 1
2

log10 B, so Θ = 2.2Ca1/4 (22a, b)

with an error less than ±15% in practice. Equation (22b) expresses the apparent
contact angle as a function of a single parameter Ca depending only on well-known
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macrophysical properties. This important result implies that in a plot of Θ against
Ca, the entire dependence of Θ on microphysics amounts to a modest scatter in
that plot; indeed, we shall see in § 10 that the experimental error in measuring Θ
is comparable with that in the simple relation (22b). Though Stephan (1992, figure
5.17) concludes that Θ is insensitive to the value of A, no one before has used that
insensitivity to derive a simple formula for Θ.

In addition to suggesting the formula (22), the asymptotic result (21) also predicts
Θ accurately. In figure 7, curves (a) and (b) show, respectively, the one-term and
two-term predictions of the asymptotic analysis. The one-term prediction includes
only the contribution of the inner isothermal region to Θ/Ca1/4; it is obtained by
setting ‘e = 1’ in (21). The two-term prediction is given by (21) as displayed, and
includes the additional contribution to Θ from the adjustment region. Curve (b) fits
the numerical results nicely, so that the second-order analysis is accurate for values
of the parameters occurring in practice. Curve (a) shows that the increase in slope
across the thickness region is significant in examples like that of Stephan & Busse,
for which B = 1.1; however for 8 of Kim’s 11 experiments on octane, table 2 shows
that B < 0.5. Even the one-term analysis represented by curve (a) then predicts Θ
to within 30%. The one-term analysis becomes increasingly accurate to the left-hand
side of the figure as B → 0.

The only equation comparable to (21) is that derived by Hocking (1995) following
a heuristic discussion by Anderson & Davis (1995, equation 20). Hocking’s analysis
describes a slightly different physical situation, as he takes the fluid as partially
rather than perfectly wetting; thus, the static contact angle Θ0 6= 0. However, he
does not include the thermodynamic effects of the short-range forces that create Θ0;
since those forces set a minimum scale, and so prevent the occurrence of a velocity
singularity, in their absence Hocking must impose a scale instead. He does that by
using a slip boundary condition in which the tangential velocity u0 at y = 0 satisfies
u0 =L(∂u/∂y)0, where L is the constant slip length. In our notation, Hocking’s (14)
states that Θ4 ∼ Θ4

0 +12Ca ln{Θ0/(2ΘβL)} for vanishing Biot number βL = hL/K`.
(Our βL is the ratio of Hocking’s ‘β’ to his ‘K ’; as stated following his (6), his analysis
is for ‘K � β’, i.e. for βL → 0.) This prediction shares with our (21) a common
scaling Θ ∼ Ca1/4 for Θ � Θ0, and a common functional form for the dependence
on microphysics; only the argument of the logarithm differs. Hocking does not derive
a simplified result like (22b).

8. Simplified model of the evaporating meniscus
To explain why the slip and wetting models predict similar results for Θ, we

formulate a purely hydrodynamic model of the evaporating meniscus. This model
has an inner and outer structure, the inner and outer problems being (13) and (16).
To construct the model, we note that in both (13) and (16), the effect of pressure on
evaporation kinetics is negligible; so we use the kinetic equation J = h(T − To)/Q
given below (4). Similarly, we take the disjoining force as negligible; so we take the
domain as semi-infinite, and impose a dimensional film thickness a∗ at the origin. We
define length and pressure scales by L′s = a∗/Ca1/4 and P ′s = 3µ`V`L

′
s
2
/a3∗; so L′s is

the horizontal scale on which the capillary pressure balances the pressure difference
P ′s needed to drive the evaporatively induced flow in a film of thickness a∗. We then
define the dimensionless film thickness H , distance x, and pressure P by H = H∗/a,
x = x∗/L′s and P = (P∗ − Po)/P ′s ; the dimensionless temperature and evaporative
mass flux are as defined by (5).
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In this hydrodynamic model, the dimensionless pressure P , film thickness H ,
interface temperature T and evaporative mass flux J satisfy (H3Px)x = J , J = T ,
(1− T )/H = B′J , and −P = Hxx. By elimination of J and T , we find that P and H
satisfy

(H3Px)x = 1/(1 + B′H), Hxx = −P for 0 < x < ∞, (23a, b)

H = 1, Hx = 0 = Px at x = 0, (23c, d)

P → 0 as x→∞. (23e)

Here, the Biot number B′ = ha∗/K`, which is proportional to the quantity B used
in § 7. Problem (23) has physical significance only if B′ → 0, for only then can
microphysics be parameterized by a lengthscale.

These equations differ from a similar system used for thick evaporating films by
Anderson & Davis (1995, equation 9) in one essential; we assume a no-slip boundary
condition in (23a) where Anderson & Davis allow slip. However, there is no reason
to believe that slip is essential to the evaporating meniscus. Thompson & Troian
(1997) have used molecular dynamics to compute the slip length Λ as a function of
strain rate in a Couette flow. Though they find that Λ depends on the ratio of the
bond lengths in the liquid and solid, application of their results to the evaporating
meniscus suggests that Λ ∼ He, the thickness of the equilibrium film. As the liquid
in that equilibrium film is stationary relative to the wall, slip seems unlikely to be
physically significant. Anderson & Davis use it as a device to prevent a velocity
singularity; we achieve that end instead by imposing a non-zero film thickness at the
origin, and we determine that length by the analysis in §§ 5 and 6.

We can now explain the fourth-root dependence. Because the solution of (23)
depends on the single parameter B′, we see that limx→∞Hx = fn(B′), and since
L′s = a∗/Ca1/4, Θ = Ca1/4fn(B′). Though the function fn(B′) does not approach a
limit as B′ → 0, that does not affect the fourth-root dependence on Ca since Ca and B′
are independent parameters. Because the normal velocity is imposed by evaporation
rather than the tangential velocity, a fourth-root dependence occurs here instead of
the cube root familiar from Tanner’s rule for isothermal spreading.

A thermodynamically complete analysis of an evaporating, partially wetting system
would be of interest, as physical reasoning suggests the coefficient of Ca1/4 might be
increased by the short-range forces creating the static contact angle. The existence
of a non-zero static contact angle is known to require the interface to be attracted
to the wall over a range of film thicknesses; see Wong, Morris & Radke (1992), and
references there. Because we have seen that a repulsive force between the interface
and wall impedes evaporation from the thin inner film, an attractive force should
enhance evaporation. This logic shows that although (23) requires Θ ∼ Ca1/4, the
numerical coefficient should increase with Θ0. Though Hocking’s equation (14) pre-
dicts such an increase, its cause is unclear to me as his model contains no thermo-
dynamics.

9. Heat flow
We now consider the heat flow, as part of our analysis of Kim’s experiments

requires us to infer ∆T from the measured evaporation rate. The dimensional heat
flow q∗ across the interval (−∞, x) is given by Θq∗/(K`∆T ) = βb`′(4 ln `)H̃3P̃x̃; here,
we have used (9) and the identity H3Px = (4f`′ ln `)H̃3P̃x̃. To find q∗, we need the
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matching condition

lim
x̃→0

H̃3P̃x̃ = 0, (24)

which follows from the equation immediately preceding it, because at the outer edge
of the inner region H3Px is independent of β, while (4f`′ ln `) is algebraically large
in β. Equation (24) states that the evaporation from the inner region is negligible
compared with that from the outer region, as we expect from the numerical solutions
discussed following figure 3.

To find q∗, we substitute for H̃ from (17a) on the right-hand side of the governing
equation (16a), use the binomial theorem, and then integrate (by parts, where ap-
propriate) to find H̃3P̃x̃. The integration constant is zero by (18c) and the matching
condition (24). So for β → 0,

Θq∗
K`∆T

= βb`′
{(

1− 1

ln `
H̃1x̃

)
ln (1 + x̃)

+
1

ln `

(
H̃1

1 + x̃
−
∫ x̃

0

P̃1 ln (1 + x̃) dx̃

)}
+ o

(
1

ln `

)
. (25)

The terms have been grouped here to promote interpretation.
To interpret (25), we first study its behaviour for x̃ → ∞. The integral then

approaches the limit
∫ ∞

0
P̃1 ln (1 + x̃) dx̃ = 1

8
(1− 1

3
π2), while H̃1 ∼ x̃/4 by (20b), so that

Θq∗/(K`∆T ) ∼ ln x̃+ c1/(ln `) + · · · . (26)

Here, c1 = 1
8
(1 + 1

3
π2), and we have used (20b), i.e. βb`′ ∼ 1 + 1/(4 ln `), to simplify

the coefficient of ln x̃. As defined by (15), x̃ = x/`′ and `′ = k`, where k is given by
figure 4. The error in (26) is o(1) in x̃, and o(1/ ln `) in `. Because we have used (20b)
here, the value of Θ on the left-hand side is that given by the second-order equation
(21a).

We now interpret equation (26). At first order, the contact region imposes a
lengthscale `′ on which the contact line singularity is resolved. The notation x→ ∞,
which is ambiguous in (10) unless β and f are both O(1), now has a precise meaning
even for β → 0; it is that x/`′ → ∞. By the discussion following (20b), x̃ ∼ Θx∗/L,
which expresses x̃ in terms of the adjustment thickness and the dimensional position.
Next, interface distortion within the adjustment region has two mutually opposing
effects on the heat flow. It increases the conduction path for large x, but decreases
it near the apparent contact line. The first effect enters (26) through the value of Θ,
and the second, through the positive term c1/(ln `). The overall effect is to reduce
q∗ since distortion for large x affects q∗ through the multiplier Θ, while distortion
near the contact line merely determines the additive constant c1. This suggests that
we should predict heat flows by combining the first-order analysis for q∗ with the
accurate second-order result for Θ; this is effectively the path followed by Morris
(2000), as Θ is computed there without approximation.

At leading order, there is a simple expression giving q∗(x̃) for all x̃ because the
outer interface is then linear everywhere. For ln ` → ∞, (20b) implies that βb`′ → 1.
By (25), Θq∗/(K`∆T ) = ln(1 + x̃) + o(1) for 0 6 x̃ < ∞. We express this in terms
of the dimensional coordinate x∗, Θ and the adjustment thickness L by using the
asymptotic relation x̃ ∼ Θx∗/L given above. So

Θq∗/(K`∆T ) = ln(1 +Θx∗/L) + o(1). (27)
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The origin for x∗ is at the apparent contact line, because the outer solution (17a)
shows that at leading order the outer film thickness H̃ = x̃.

Equation (27) is identical with the prediction of the phenomenological model, in
which the temperature is found by solving the steady conduction equation subject to
Newton’s law on a linear interface with given contact angle. The two analyses of heat
flow have the same physical basis, since we have seen that the interface is linear on
the scale at which heat flow occurs, and conversely that by (24), there is negligible
heat flow in the region where Θ is established. Further, Newton’s law holds in the
present analysis of the heat flow because the effect of pressure on evaporation is
negligible within the thick outer film. By elimination of J between (6a) and (6b), the
film thickness and interface temperature then satisfy βT + (T − 1)/H = 0, which is
the form taken by Newton’s law for Θ → 0, when ∂T/∂n = (T −1)/H . Equation (27)
can thus be derived by solving the simplified form of the phenomenological model
appropriate to a thin film on an isothermal substrate, namely

Tyy = 0, for 0 < y < βx, (28a)

Ty + βT = 0, at y = bx, (28b)

T = 1, at y = 0. (28c)

In problem (28) only, we use T both for the temperature at the interface, and for
that within the liquid.

Figure 8 shows the heat flow q∗ as a function of Θx∗/L for f = 1, and two values
of β representative of those in table 1. Throughout this work, x∗ is dimensional and
the adjustment thickness L = K`/h, as defined in § 1. The heavy curve shows the
prediction (27); for that curve, Θ is found from the accurate result (21). Light curves
show values computed without approximation from (7), (8) and (9). Broken lines
show the second-order asymptote (26). By comparing the heavy and light curves, we
see that if Θ is calculated from (21), equation (27) predicts the heat flow accurately
even for β = 0.1 if Θx∗/L > 5. For β = 0.01, the prediction is accurate if Θx∗/L > 1.
This use of (27) combines a second-order result for Θ with a first-order result for q∗;
this is admissable, as q∗ is determined for large x chiefly by Θ rather than by details
near the vertex of the wedge. The heat flow is thus predicted accurately in practice
by combining the phenomenological model with equation (21) for Θ. Morris (2000,
figures 7, 8 and 10) gives a detailed comparison of the phenomenological model with
the simulation of Stephan & Busse (1992); that comparison includes the effect of
substrate conduction.

For use below, we note in Kim’s experiments on octane, L/Θ is between 5 and
50 µm. Since the horizontal extent is much larger than that, we see from figure 8 that
the phenomenological model can be applied to his experiments.

10. Comparison with existing experiments
Kim (1994, figures 5.5–5.20) gives film profiles measured by interferometry for two

liquids, octane and R113 (C2F3Cl3) evaporating from a superheated substrate of Si
with a oxidized surface layer of thickness 2–3 nm. The liquid evaporates into a mixture
of air and the vapour phase, so that the liquid and gas are not chemically identical.
As we note in § 1, though Kim and Kim & Wayner (1996) infer local values of the
slope from Kim’s measured profiles, they do not report values of Θ; the values given
here seem to be the first published for evaporating systems.

To find Θ from Kim’s measured profiles, I used the approach in § 3. I numerically
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Figure 8. Heat flow q∗Θ/(K`∆T ) as a function of position Θx∗/L = βbx within the contact region,
where L = K`/h as defined in § 1. Heavy curve, prediction (27). Light curves, computed without
approximation from (7) and (9). Broken lines, asymptotic relation (26). For (a), β = 0.1 and f = 1;
for (b), β = 0.01 and f = 1.

differentiated the dimensional thickness H∗, then plotted H2
x∗ against H∗. As we discuss

above (8), the constant curvature part of the interface becomes a line in the (H2
x∗,

H∗)-plane; its slope is proportional to the curvature, and the intercept determines Θ2.
The advantage of the new method is that the constant-curvature region is evident
in the (H2

x∗, H∗)-plane; such plots show that in Kim’s experimental profiles, the
curvature becomes constant only at film thicknesses exceeding 0.2–0.3 µm. I discarded
data from the region of variable curvature, and fitted a line to the rest by the least
squares method. The new method allows Θ to found repeatably, and without using
the theory to be tested.

Values of Θ thus found differ from those given by Kim & Wayner (1996, figure
6). Those authors vary the dispersion constant A to fit the computed and measured
profiles, and then compute the slope at specific film thicknesses (either 0.02 or
0.04 µm); they call the result the ‘apparent contact angle’ for a specific thickness (Kim
& Wayner 1996, equation 14). Their values have no relation to the prediction (21) as
the thicknesses ∼ 0.02 µm at which they compute the angle are about a tenth that at
which the curvature becomes uniform in the experiments. Unlike the angle defined by
(8), the quantity computed by them cannot be used with equation (27) to find heat
flows.

Next, we discuss the method by which Kim measured ∆T . In the experiments, ∆T
is typically less than a millikelvin, and is too small to be measured directly. Instead,
Kim measures the thickness He of the equilibrium film by ellipsometry, then infers
∆T from the condition of thermodynamic equilibrium. However, he uses equation
(11) of DasGupta et al. (1993) to make the inference. I believe that equation to be
incorrect as we discuss above (2). To infer ∆T from Kim’s measurements, we use (3)
and (1d) to show that

(Tw − T∞)/T∞ = (A/H3
e − ∆P )/(ρ`Q). (29)
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On the left-hand side of (29) we have replaced To in the denominator by T∞,
because T∞ + To by (2b). Equation (29) expresses the applied temperature difference
∆T in terms of T∞, the measured equilibrium thickness He, the pressure difference
∆P = Pa − P`∞ across the interface at infinity, and thermodynamic properties; they
are the dispersion constant A, liquid density ρ` and latent heat Q. As we state above
figure 1, material properties are evaluated at the wall temperature Tw . Though the
prediction (21) implies that Θ depends only weakly on A, the relation (29) between
∆T and He depends linearly on A. Use of (29) thus introduces a stronger dependence
on A than that existing in the physical problem.

To find ∆T from Kim’s measurements of He, I assume A to be independent of
T and use values determined experimentally for the isothermal meniscus by Kim.
Though Tw varies from 300 K to 360 K in Kim’s experiments, my procedure is
justified as A is insensitive to temperature. Müller-Buschbaum, Tolan & Press (1994,
table 1) show experimentally that for CCl4 on Si–SiO2, A varies from (21 ± 5) zJ at
308 K to (20 ± 4) zJ at 318 K. (A zeptojoule is 10−21 J.) These values suggest A may
decrease weakly with increasing Tw , but that to a first approximation, A is constant.
This conclusion is consistent with the dependence of A on Tw inferred by Reyes &
Wayner (1996, figure 2) from an empirical relation between A and surface energies. By
contrast, Kim varies A to fit the computed and measured film profiles, and since Tw
varies between experiments, he finds A as a function of Tw . I did not use that method
as it predicts A to vary with Tw more strongly than expected from the citations above.

I use the following values for A; for octane on Si–SiO2, A = 0.03 zJ (Kim 1994,
table 5.2) and for R113 on Si–SiO2, A = 0.15 zJ (DasGupta et al. 1993, table 3). The
value for octane is smaller than other estimates for isothermal systems; Levinson et
al. (1993) find experimentally that A = 0.9 zJ for octane on Si–SiO2, and Truong &
Wayner (1987) predict theoretically that A = 0.4 zJ. Kim (1994, p62) attributes the
discrepancy to water adsorbed on the silicon.

I tested the choice A = 0.03 zJ for octane as follows. For one case, Tw = 303 K,
Kim measured the rate at which the level in the liquid reservoir fell, and inferred
the evaporation rate Ψ∗ = 0.880 nl s−1 (Kim 1994, table 5.19); the corresponding
heat flow ρ`QΨ∗ = 0.232 mW. From this, and the length 62.8 mm of the contact line
found from Kim’s figure 3.2, we infer that the heat flow per unit length of contact
line q∗ = 3.68 mW m−1. To find ∆T from q∗, I assumed an isothermal substrate,
and solved the conduction equation for the thin film subject to Newton’s law at the
parabolic interface H∗ = Θx∗ + x2∗/(2R) to show that

Θq∗/(K`∆T ) =
2√

1− α tanh−1
√

1− α. (30)

Here, α = 2L/(Θ2R) is twice the ratio of the adjustment thickness L to the thickness
Θ2R at which the quadratic term in the equation for H∗ balances the linear term; the
flux then switches from a slow 1/x∗ decay to a faster 1/x2∗ decay, so that the heat
flow approaches a limit at infinity. (We treat large-scale curvature in more detail in a
subsequent paper.)

The conduction model is applicable to the experiments for the following reasons.
First, conditions (3a–c) of Morris (2000) must be satisfied if we are to use a contact
angle to compute heat flows; these conditions involve only measurable quantities, and
can be shown to hold for the experiment in question. Secondly, for the conduction
model to give the heat flow accurately, the extent X∗ of the meniscus must be great
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Figure 9. Measured and predicted contact angles. ◦, •, experimental values inferred from profiles
measured by Kim (1994) for octane, and R113, respectively; +, calculated from (22a); broken line,
Θ = 2Ca1/4, least-squares fit to calculated values. See table 2 for experimental values.

enough for the model to apply over a large region; we saw in the discussion of figure
8 that this requires X∗ > L/Θ, which is satisfied in the experiments.

From my fit to the measured profile given as figure 5.8 of Kim (1994), Θ = 0.014
and R = 1.66 mm. From tables of material properties we find K` = 0.13 W m−1 K−1,
and the heat transfer coefficient h = 0.259 MW m−2 K−1, so that L = 0.50 µm. Equa-
tion (30) can now be solved for ∆T + 0.30 mK. That is ∼ 1.2 times the value of
0.24 mK estimated from Kim’s measured equilibrium film thickness of 5.2 nm, and the
agreement supports the use of the value given above for A. Of course, the very close
agreement is not significant; in the conduction calculation, I assume an isothermal
substrate, but equation (33) of Morris (2000) can be used to show that is only a fair
approximation here. The significant point is that the alternative choice A = 0.9 zJ for
octane would lead to estimates of ∆T differing by a factor ∼ 30. We also see that ∆T
can be found by measuring the volumetric evaporation rate, then using conduction
theory.

Figure 9 shows Θ as a function of the capillary number defined in table 1. Circles,
both open and closed, denote experimental values inferred from Kim’s measured
profiles, while plus signs denote values predicted by (22a); the experimental values
are also given in table 2. The broken line Θ = 2Ca1/4 is fitted by least squares to the
predicted values; the coefficient 2 lies within the range stated in the abstract of this
paper. The figure shows adequate agreement between the experimental and predicted
values. The two agree to within ±40% for 9 of the 15 experiments, with much of the
error originating in Kim’s four profiles for R133. Those profiles are visibly rough, and
there is considerable scatter in the local values of the slope used to infer Θ; this is
especially so of the profiles giving the greatest and least values for R113. Though the
values for R113 worsen the quantitative agreement between theory and experiment,
they are included to stress that two liquids with quite different dispersion constants
have apparent contact angles obeying (22) with fair accuracy. The scatter ∼ ±25% in
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Fluid Tw(K) 108Ca 100Θe 100β f/10 10ε B Relative error

Octane 301 0.37 0.64 1 0.7 0.7 0.1 1.0
302 0.51 1.3 1 0.7 0.5 0.09 0.5
303 0.59 1.4 1 0.7 0.6 0.09 0.4
312 1.4 1.3 1 0.8 0.4 0.1 0.7
320 1.9 1.8 2 1 0.7 0.2 0.4
329 2.8 2.2 3 1 0.8 0.3 0.3
333 3.2 3.2 3 1 0.8 0.3 0.08
338 4.1 2.5 4 2 0.8 0.5 0.2
347 5.2 3.7 5 2 1 0.6 0.2
353 5.9 3.5 6 2 2 0.8 0.1

Octane 359 6.7 3.4 7 3 3 1 0.06
R113 302 93 3.7 10 1 0.08 1.0 0.5

304 101 3.9 10 1 0.09 1.1 0.5
306 106 4.1 10 1 0.3 1.2 0.4

R113 308 110 2.5 10 1 0.5 1.3 0.8

Table 2. Parameter values for figure 9. In the last column, the relative error gives the difference
between the fit (22a) to the computed values Θc and the experimental value Θe; it is defined as
2|Θe −Θc|/(Θe +Θc)

.

the values for R113 gives a rough estimate for the random error in the experimental
values; the random error for octane is comparable, as we see from the two measured
values with Ca1/4 ∼ 0.014.

One of the main points in this paper is the precise definition (8) of Θ, with its
underlying idea that Θ is defined by a limit. It must be ensured experimentally that
the measured angles are independent of the large-scale curvature. Experiments to
date suffer from the lack of this idea. For the three points for octane with Θ + 0.04,
table 2 shows that 0.1 < ε < 0.3. We see from figure 2 that the measured values of Θ
depend on ε, and consequently may be only two-thirds the true limiting value. More
experiments are needed at smaller values of ε to test the theory.

11. Discussion
Though it has long been known that the evaporating meniscus exhibits an apparent

contact angle, our asymptotic analysis establishes that this angle is fundamental to
computing the heat flow. It also gives formulae for the heat flow and contact angle.
The analysis exploits the separation of scales existing for vanishingly small Biot
number based on the evaporative heat transfer coefficient, liquid conductivity and
thickness of the equilibrium film. We show that the apparent contact angle Θ is then
determined within a small-scale inner region, within which a negligible fraction of
the total evaporation occurs. The heat flow occurs at larger scales in a geometry
determined by Θ, and is determined by solving the steady conduction equation for
the liquid wedge subtending an angle Θ. On the outer phase interface, Newton’s law
of cooling holds, i.e. K`∂T/∂n+ h(T − T∞) = 0, where n is distance into the vapour.
We call this outer problem the phenomenological, or conduction, model for the heat
flow. Our analysis of the inner region gives a formula for Θ; see equation (21). We
show that the angles predicted by that formula agree in practice to within a few per
cent with values computed without approximation from the theory of the evaporating
meniscus; the predicted values of Θ also agree adequately with the experiments of
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Kim (1994). This paper thus establishes the claims made in the last paragraph of
Morris (2000).

The advantage of this approach for predicting heat flows is neatly illustrated by
our comparison in § 10 of predicted values of Θ with values inferred from Kim’s
measured profiles. As part of that comparison, we require the applied temperature
difference ∆T . Because the conditions for validity of the conduction model for heat
flow can be expressed purely in terms of phenomenological variables, including Θ, we
were able to justify using that model to infer ∆T from Kim’s measured evaporation
rate. Unlike the method used by Kim to infer ∆T , our method is independent of
wetting physics.

The present treatment of heat flow differs in principle from that in Morris (2000)
because here the conduction model is derived by asymptotic analysis for β → 0 of
a complete model of the contact region; there, by contrast, the conduction model is
justified by showing that it provides a self-consistent picture of the contact region if

P = ρvν`/(ρ`CLΘ
2)� 1, Ca/Θ4 � 1, (31a, b)

and ΘΛ/L � 1 (Morris 2000, equations 3a–c). Here, Λ is the molecular free path
within the vapour, and L is the adjustment scale. The first inequality ensures that
the effect of liquid pressure on evaporation kinetics is negligible; the second, that the
interface slope is uniform at the scale L/Θ; and the third, that pressure differences
within the vapour phase do not affect evaporation kinetics.

We now show that the inequalities (31a, b) are satisfied for β → 0; the conduction
model is thus equivalent to one part of the present asymptotic analysis, as claimed
by Morris (2000, p. 87). (The third inequality cannot be derived from problem 7,
as pressure differences within the gas are assumed negligible in deriving problem 7.)
First, the parameter P can be expressed in terms of the parameters in the present
theory by using (21) to eliminate Θ; so P2 = β2f/(36λ2 ln e`). By elimination of f
between this relation and the definition (15d) of `, we find that P = 1/(12λβ`′2 ln `);
here, we have used ln e` ∼ ln `. The effect of pressure on kinetics is thus negligible
according to (31a) if β`′2 ln `� 1. This condition is equivalent to the scalings given in
§ 6, because in the unnumbered equation opening the paragraph above (16), the effect
of pressure on evaporation is represented by the term P̃ /(β`′2). This is ∼ 1/(β`′2 ln `)
because P̃ ∼ 1/ ln ` by (17b). The condition (31a) is thus equivalent to the scalings
in § 6. Secondly, the inequality (31b) is plainly satisfied for β → 0 by (21a). The
inequalities (31a, b) are satisfied for β → 0, as claimed.

Here, we have analysed in detail only the case ε = 0 for which the large-scale
curvature is vanishingly small compared with that in the contact region. The limit
ε→ 0 is singular in two different ways. First, if the interface is stationary relative to
the wall, the singularity is weak; it does not affect the contact angle, but there is a
significant effect on the heat flow in the case ε ↓ 0, in which the interface is concave
up. To understand the effect, note that for ε > 0, (7b, c) require that H ∼ 1

2
εx2 as

x→∞. The mass balance (7a) then implies that (H3Px)x = O(1/(εx2)) at infinity. The
heat flux thus decays as x−2, and is integrable at infinity because the film thickness
increases faster than x. The limit ε ↓ 0 is singular because the x−2 decay in the heat
flux is replaced for ε = 0 by a slower x−1 decay which is not integrable at infinity.
By incorporating the small positive curvature when the interface is concave up, a
total heat flow can be associated with the contact region. Heat pipes are efficacious
because that heat flow grows indefinitely as ε→ 0. A subsequent paper will describe
the heat flow calculation for the weakly curved interface, and verify the predictions
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of the local analysis against a complete solution for the heat flow across the meniscus
in a channel.

Secondly, the singularity is even stronger when there is spreading; then, as we have
seen in §1, even the contact angle depends on ε because limx→∞ limε→0 Hx does not
exist. The problem is obtained from (7) by modifying the mass balance to include
boundary motion. Relative to axes moving with the contact line the mass balance
then becomes (H3Px)x = UHx + f(1 + P )/(1 + βH), where the positive parameter U
is a dimensionless measure of the boundary velocity in the x-direction. The mass flow
UH due to boundary motion increases with film thickness H more strongly than that
due to evaporation, and the interesting problem is that for which U → 0 so that the
boundary motion affects the interface only far from the contact line. We anticipate a
structure in which evaporation establishes one contact angle Θe at small scales, while
the boundary motion alters this slope at larger scales to a second value Θb. Either
angle might control the heat flow, depending on the value of ε. This problem will be
analysed in a subsequent paper.

I thank Enrique Ramé, Howard Stone, Peter Wayner and the referees for helpful
comments; and members of the Radke research group in the Chemical Engineering
Department at Berkeley for many illuminating discussions.

Appendix A. On thermocapillary stresses
We show that for β → 0, thermocapillary stresses are negligible in both the inner

and outer regions if

β σTo/(ρ`QHsTc)� 1, ∆T/(TcΘ
2)� 1. (A 1a, b)

(A 1a) ensures that the thermocapillary stress in the inner region is negligible
compared with the viscous stress due to the evaporatively induced flow, while (A 1b)
ensures that the pressure field due to the outer thermocapillary flow does not perturb
the interface. We show that these conditions hold in Kim’s experiments; the modest
discrepancy between theory and experiment is not due to thermocapillarity.

We derive (A 1a) first. Within the inner region, the dimensional film thickness
H∗ ∼ Hs. In the lubrication approximation, the shear stress within the film owing
to the evaporatively induced flow µ`U∗y ∼ H∗P∗x. Because the thermocapillary stress
∼ σ′(T∗)T∗x, the ratio of thermocapillary to viscous stress ∼ σ′(T∗)T∗x/H∗P∗x. We
now estimate T∗x, P∗x and σ′(T∗). First, to find T∗x, we eliminate J between (6a) and
(6b) to show that 1 − T = βH(1 + P )/(1 + βH). Within the inner region, H ∼ 1
and −1 < P < 0, so the dimensionless temperature difference ∼ β. So Tx ∼ β
and the dimensional temperature gradient T∗x ∼ β∆T/Ls. Secondly, P∗x ∼ Ps/Ls,
since the pressure difference driving the inner flow ∼ Ps, i.e. ρ`Q∆T/To by (4a).
That pressure difference occurs on the inner scale Ls by the analysis in § 5. Thirdly,
σ′(T ) ∼ σ/Tc, where Tc is the critical temperature (see e.g. Morris 2000, p. 66)
The ratio of thermocapillary to viscous stress is therefore β σTo/(ρ`QHsTc), so that
thermocapillarity is negligible within the inner region if (A 1a) holds. Usually, ρ` >
500 kg m−3, Q > 0.5 MJ kg−1 K−1, Hs > 1 nm and σ < 20 mN m−1; in particular, these
conditions hold in Kim’s experiments. So σ/(ρ`QHs) < 0.1, and (A 1a) is satisfied as
To < Tc and β � 1. Thermocapillarity is thus negligible within the inner region since
high shear stresses are induced in the thin film by the evaporatively imposed flow.

Next we derive (A 1b), and show that thermocapillarity is also negligible in the
outer region. Morris (2000, p. 66) uses scaling to show that the normal velocity
V`M due to thermocapillarity is related to the evaporatively induced normal velocity
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V` by V`M/V` ∼ Θ2∆T/(CaTc), where Ca = µ`V`/σ, as throughout this work.
The thermocapillary flow induces a pressure field that can be estimated from the
lubrication equation. By repeating the analysis in Morris (2000, p. 65), we find
that this pressure difference causes a change ∆Θ across the outer region given by
∆Θ/Θ ∼ µ`V`M/(σΘ

4). By combining this result with that for V`M/V`, we find that
∆Θ/Θ ∼ ∆T/(TcΘ

2). So, thermocapillarity is negligible within the outer region if
∆T/(TcΘ

2)� 1, as stated by (A 1b). This analysis strengthens slightly the conclusions
reached by Morris (2000, p. 66); there we state that V`M/V` < 1, but do not state
explicitly that thermocapillarity is therefore negligible since pressure differences due to
V` are themselves too small to perturb the interface. Thermocapillarity is negligible in
the outer region in Kim’s experiments since ∆T < 0.5 mK, Tc > 500 K and Θ > 0.01
so that ∆T/(TcΘ

2) < 0.01.

Appendix B. Derivation of the one-parameter family of solutions (14)

By (11), y = Ĥ/(x
√

2) satisfies

4y3(yzzz − yz) = −1 where z = ln (x/k) (B 1)

as in (14). We show that the assumption yz � yzzz for z →∞ leads to a self-consistent
solution of the differential equations (13a, b) that satisfies the outer boundary condi-
tion (13f), namely Ĥxx(∞) = 0.

If yz � yzzz for z → ∞, (B 1) implies 4y3yz = 1 + o(1) for z → ∞. By integration,
y ∼ z1/4 where we have absorbed the integration constant into the parameter k.
Since y ∼ z1/4 satisfies the condition yz � yzzz , the assumption is self-consistent, and
Ĥ ∼ xz1/4

√
2. This gives the first term in (14). Higher-order terms can be found

by writing (B 1) as 4y3yz = 1 + 4y3yzzz , and using successive approximations. All
integration constants arising in successive integrations must be taken as zero; since
the condition yz � yzzz reduces the order of the differential equation to one, the
solution can depend on only the one parameter k. To systematize those calculations,
we let w = y/z1/4 so that w satisfies

w = {3wzz + 4zwzzz − (4z + 9
4
z−1)wz + w−3}/{1− 21

16
z−2}, (B 2)

without approximation. As (B2) is invariant under z → −z, it admits a solution
w ∼ ∑∞

n=0 An/z
2n, and (14) follows by substitution. Though this expansion for w

involves only even powers of z = ln (x/k), w is not an even function of ln (x/k) for
all x because the expansion includes only terms that are merely logarithmically small
as x→∞; algebraically small terms are not included.
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